Progress on the Inclusive Muon Neutrino Charged-current Cross Section Measurement in the NOvA Near Detector

Biswaranjan Behera

Indian Institute of Technology, Hyderabad, India

On Behalf of NOvA Collaboration

bbehera@fnal.gov

New Perspectives 2017 Fermilab, Wilson Hall June 5, 2017

Motivation

- Long-baseline neutrino experiments are entering in the precision era, need to reduce systematic errors to the level of a few percent.
- Improving the precision of our oscillation measurement requires better knowledge
 of neutrino-nucleus cross section. NOvA has access to all interaction type with a
 narrow band beam(1-3GeV).

• The ν_{μ} CC inclusive process is a baseline measurement, one that can be used, to directly tune our simulation for the oscillation analysis and can be used for cross section ratio measurements with reduced systematic.

Motivation

- Long-baseline neutrino experiments are entering in the precision era, need to reduce systematic errors to the level of a few percent.
- Improving the precision of our oscillation measurement requires better knowledge
 of neutrino-nucleus cross section. NOvA has access to all interaction type with a
 narrow band beam(1-3GeV).

• The ν_{μ} CC inclusive process is a baseline measurement, one that can be used, to directly tune our simulation for the oscillation analysis and can be used for cross section ratio measurements with reduced systematic.

Introduction to the NOvA Experiment

NOvA: NuMI Off-axis ν_e Appearance

- NOvA can observe oscillations in two channels using a predominantly ν_μ beam (ν_e appearance and ν_μ disappearance).
- The Near Detector (ND), 1km from the source, Underground 100m from surface, 14.6 mrad off-axis w.r.t NuMI beam.

- Made up of PVC with liquid scintillator (mostly carbon), 3.9m X 3.9m X 12.67m, 193 ton, 192 planes, 20k channels.
- Low-Z, 1 plane $\sim 0.15 X_0$, highly active tracking calorimeter, used to measure composition of the un-oscillated beam.

Muon Catcher:

- Intersperses steel planes with active cells (PVC with liquid scintillator).
- Increases the efficiency to contain muons.

Introduction to the NOvA Experiment

NOvA: NuMI Off-axis ν_e Appearance

- NOvA can observe oscillations in two channels using a predominantly ν_μ beam (ν_e appearance and ν_μ disappearance).
- The Near Detector (ND), 1km from the source, Underground 100m from surface, 14.6 mrad off-axis w.r.t NuMI beam.

- Made up of PVC with liquid scintillator (mostly carbon), 3.9m X 3.9m X 12.67m, 193 ton, 192 planes, 20k channels.
- Low-Z, 1 plane $\sim 0.15X_0$, highly active tracking calorimeter, used to measure composition of the un-oscillated beam.

Muon Catcher:

- Intersperses steel planes with active cells (PVC with liquid scintillator).
- Increases the efficiency to contain muons.

Cross section Measurement in the NOvA ND

 We will measure the inclusive cross section in bins of true neutrino energy and as well as flux-integrated double-differential with respect to the final-state muon's true kinetic energy and true angle.

$$\left(\frac{d^2\sigma}{d\cos\theta_{\mu}dT_{\mu}}\right)_{i} = \frac{\sum_{j} U_{ij}(N^{\rm sel} - N^{\rm bkg})}{\epsilon N_{\rm target}\Phi} \tag{1}$$

 N^{sel} = Number of selected counts.

 $N^{\text{bkg}} = \text{Number of estimated background counts.}$

 ${\it U}={\it Unfolding matrix}$ that corrects the reconstructed quantities for detector resolution.

 Φ = The neutrino flux.

 $\epsilon = \text{Signal selection efficiency}.$

 $N_{\rm target} =$ The number of targets in the fiducial volume.

- We require that all track vertices start inside the fiducial volume.
- Cuts are designed to reject energy deposited by neutrino interactions in the surrounding rock.

Event Selection

NOvA reconstructs muons as tracks and separates them from the hadronic background using a **k-nearest neighbors (kNN)** algorithm trained with four variables:

- track length
- longitudinal energy profile (dE/dx)
- · scattering along the track and
- fraction of energy in the neutrino event associated with the track

Event Selection

- Events with Muon ID > 0.29 (Optimized Muon ID w.r.t different interaction type by using F.O.M $(\frac{s}{\sqrt{(s+b)}})$) are retained as candidate of ν_{μ} CC events.
- Backgrounds are Neutral Current(NC), ν_e , $\bar{\nu}_e$, $\bar{\nu}_\mu$ and non-fiducial.
- In the lower energy $\bar{\nu}_{\mu}$ CC is dominated, however NC is dominated in the higher energy region.

Efficiency and Purity for Contained Events

$$\mathsf{Efficiency} = \frac{\# \ \mathsf{of} \ \mathsf{selected} \ \mathsf{true} \ \nu_{\mu} \ \mathsf{CC} \ \mathsf{events}}{\# \ \mathsf{of} \ \mathsf{true} \ \nu_{\mu} \ \mathsf{CC} \ \mathsf{events}}$$

Purity =
$$\frac{\text{\# of selected true } \nu_{\mu} \text{ CC events}}{\text{\# of selected events}}$$

- Efficiency is $\sim 100\%$ and Purity is $\sim 95\%$ in the peak region.
- Our signal sample is very pure.

Reconstruction of Neutrino Energy

• NOvA is a tracking calorimeter, it offers detailed reconstruction of the hadronic part of ν_{μ} CC interactions. we reconstruct energy deposited in each cells.

 $E_{\mu}=$ Energy determined from the track length of muon. $E_{had}=$ Energy deposited in the cell(non-muonic). Reconstructed Neutrino energy is sum of E_{μ} and E_{had} .

$$E_{
u} = E_{\mu} + E_{had}$$

Energy Determination for Muon and Hadrons

 Muon starts at active region and stops at muon catcher region(top left), Muon starts and stops at muon catcher region(top right), and hadronic energy(bottom).

Resolution

• The predicted resolutions in both muon kinetic energy and angle for this sample are very good (averaged over the sample is 50 MeV and 0.04 respectively).

Statistical Uncertainty

- Measuring double differential cross-section.
- Statistics are < 1% for most of the bins.
- Measurable variable has very good resolution.
- Binning are determined based on the resolution.

Sources of Systematic Uncertainties

- The uncertainty can be accessed by comparison of modified MC with our nominal MC.
- We are determining detector response(~ 1-2%) by using different GEANT Physics lists.

- Flux : ~ 8-10%
- Detector response : \sim 1-2%

We are finalizing studying on:

- Neutrino interaction
- Backgrounds
- Calibration

Summary

- NOvA has an excellent sensitivity to measure the cross section in addition to neutrino oscillation study.
- Very good resolution and enriched muon neutrino events will allow us to measure double differential cross section.
- This study shows high efficiency and purity for ν_{μ} CC event selection.
- Most of the uncertainties are nearing completion.
- \bullet We are rich in statistics, systematic dominated by \sim 10%, very relevant to future neutrino program.

Stay tuned for exciting results!!

Thank You!!

Efficiency (Vertex Z , Vertex XY)

- Efficiency = $\frac{\text{Total number of selected true } \nu_{\mu} \text{ CC events}}{\text{Total number of true } \nu_{\mu} \text{ CC events}}$
- Figure info: Efficiency calculated for different fiducial region. For this study I
 have fixed lower vertex Z position at 25 cm and upper vertex Z increasing 100cm
 starting from 350cm, on the other hand reducing 10 cm on vertex XY (cell from
 edge)

Plot: Efficiency as a function of different fiducial region by changing vertex Z and vertex XY value